高精度
高精度是计算极大数的基础算法,四个算法为:加、减 、乘和除。
加法
按照竖式加法来计算。
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
vector<int> add(vector<int> a, vector<int> b){
if (b.size() > a.size()) return add(b, a);
vector<int> c;
int t = 0; // 进位
for (int i = 0; i < a.size(); i ++){
t += a[i];
if (i < b.size()) t += b[i];
c.push_back(t % 10);
t /= 10;
}
if (t) c.push_back(t);
return c;
}
int main(){
string s1, s2;
vector<int> a, b;
cin >> s1 >> s2;
for (int i = s1.size() - 1; i >= 0; i --) a.push_back(s1[i] - '0');
for (int i = s2.size() - 1; i >= 0; i --) b.push_back(s2[i] - '0');
auto c = add(a, b);
for (int i = c.size() - 1; i >= 0; i --) cout << c[i];
return 0;
}
减法
按照竖式减法计算。减法有几个 tricky 点,当减法的时候,我们要比较大小,用大的减小的,还有减法会令结果出现前导零,需要排除。
#include<iostream>
#include<vector>
using namespace std;
vector<int> a, b;
bool cmp(vector<int> &a, vector<int> &b){
if (a.size() != b.size()) return a.size() > b.size();
for (int i = a.size() - 1; i >= 0; i --)
if (a[i] != b[i])
return a[i] > b[i];
return true;
}
vector<int> sub(vector<int> &a, vector<int> &b){
vector<int> c;
int t = 0; // 借位
for (int i = 0; i < a.size(); i ++){
t = a[i] - t; // 前去上一位的借位
if (i < b.size()) t -= b[i];
c.push_back((t + 10) % 10);
if (t < 0) t = 1;
else t = 0;
}
while (c.size() > 1 && c.back() == 0) c.pop_back();
return c;
}
int main(){
string s1, s2; cin >> s1 >> s2;
for (int i = s1.size() - 1; i >= 0; i --) a.push_back(s1[i] - '0');
for (int i = s2.size() - 1; i >= 0; i --) b.push_back(s2[i] - '0');
vector<int> c;
if (cmp(a, b)) c = sub(a, b);
else c = sub(b, a), cout << '-';
for (int i = c.size() - 1; i >= 0; i --) cout << c[i];
cout << endl;
}
高精度乘法
高精度-单精度
#include<iostream>
#include<algorithm>
using namespace std;
vector<int> mul(vector<int> &a, int b){
vector<int> c;
int t = 0;
for(int i = 0; i < a.size() || t; i ++){
if (i < a.size()) t += a[i] * b;
c.push_back(t % 10);
t /= 10;
}
while (c.size() > 1 && c.back() == 0) c.pop_back();
return c;
}
int main(){
int b;
string s1; cin >> s1 >> b;
vector<int> a;
for (int i = s1.size() - 1; i >= 0; i --) a.push_back(s1[i] - '0');
auto c = mul(a, b);
for (int i = c.size() - 1; i >= 0; i --) cout << c[i];
cout << endl;
return 0;
}
高精度除法
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
vector<int> div(vector<int> A, int b, int &r){
vector<int> c;
r = 0;
for (int i = A.size() - 1; i >= 0; i --){
r = r * 10 + A[i];
c.push_back(r / b);
r %= b;
}
reverse(c.begin(), c.end());
while (c.size() > 1 && c.back() == 0) c.pop_back();
return c;
}
int main(){
string a; cin >> a;
int b; cin >> b;
vector<int> A;
for (int i = a.size() - 1; i >= 0; i -- ) A.push_back(a[i] - '0');
int r;
auto c = div(A, b, r);
for (int i = c.size() - 1; i >= 0; i -- ) cout << c[i];
cout << endl << r << endl;
return 0;
}
最后更新于